Advances in extreme-ultraviolet (EUV) and X-ray optics are providing powerful new capabilities in high-resolution imaging and trace-element analysis of microscopic specimens, and the potential for fabricating devices of smaller critical dimensions in next-generation integrated circuit lithography. However, achieving the highest resolution with such optics usually requires the illuminating EUV or X-ray beam to be highly monochromatic. It would therefore be highly desirable to have large-field-of-view, sub-100-nm resolution optics that are achromatic to a significant degree, allowing more light to be utilized to broaden bandwidth sources such as laser-produced plasmas. Here we report an achromatic Fresnel optical system for EUV or X-ray radiation that combines a Fresnel zone plate with a refractive lens with opposite chromatic aberration. We use the large anomalous dispersion property of the refractive lens material near an absorption edge to make its fabrication practical. The resulting structure can deliver a resolution comparable to that of the Fresnel zone plates that have achieved the highest resolution (25 nm; ref. 3) in the entire electromagnetic spectrum, but with an improvement of two or more orders of magnitude in spectral bandwidth.

When Röntgen discovered X-rays in 1895, he immediately searched for a means to focus them. On the basis of uncertain observations of slight refraction in prisms, he stated that the index of refraction for X-rays in materials must be no more than about n = 1.05 if it differed at all from unity. Two decades later, Einstein proposed that the refractive index for X-rays was n = 1 − δ with δ ≈ 10−6, allowing for total external reflection at grazing incidence angles satisfying cos θc = 1 − δ, giving θc ≈ √2δ or of the order of 1 mrad (here θc is the critical angle). Modern measurements give critical angles of, for example, 9 mrad for 8.98-keV X-rays from gold surfaces; nonetheless, this sets a fundamental limit to the maximum numerical aperture, NA (and thus spatial resolution), of polychromatic X-ray focusing optics. While these optics have advanced from early demonstrations to sub-500-nm focusing, demonstrated routes to higher spatial resolution EUV and X-ray imaging and lithography have instead involved optics for monochromatic radiation. Such optics include Fresnel zone plates with 25-nm potential image resolution and high efficiency; simple Fresnel lenses, and compound refractive lenses with spatial resolution to about 200 nm (ref. 13); and mirror optics coated with synthetic multilayers which have achieved 30-nm spatial resolution in lithography applications. These approaches have led to significant advances in EUV and X-ray science.

However, all of these higher-resolution methods require the illuminating EUV or X-ray beam to be highly monochromatic. For certain experiments, such as absorption spectroscopy with focused, monochromatized X-ray beams, the demands of these optics for narrow spectral bandwidth illumination are easily met without compromising experimental throughput. With broader bandwidth EUV or X-ray sources, such as laser-produced plasmas and line emission from X-ray targets, the availability of achromatic optics would allow significantly more light to be utilized for experiments and applications.
The achromatic Fresnel objective combines a high-spatial-resolution Fresnel zone plate with a refractive lens operating in the anomalous dispersion condition to achieve these desirable properties. We begin by considering the properties of Fresnel zone plates. These optics make use of a series of concentric absorbing or phase-shifting rings with prescribed radii, giving a focal length of

\[ f_Z = \frac{R^2}{\lambda N} = \frac{2R \Delta R}{\lambda} \]  

(1)

where \(2R\) is the diameter of the optic, \(\Delta R\) is the width of the finest, outermost zone of zone number \(N\), and \(\lambda\) is the wavelength. For imaging at the Rayleigh limit of 0.61 \(\lambda/N\), the spatial resolution is 1.22\(R\). The number of zones \(N\) determines the required illumination monochromaticity or spectral bandwidth:

\[ \frac{N}{2} = \frac{R}{4 \Delta R} = \frac{\lambda}{\Delta \lambda} \]  

(2)

Combining these requirements, we see that if we wish to have a large diameter \(2R\) for a large field of view and long focal length, large values of \(N\) and thus narrow bandpass \(\Delta \lambda/\lambda = 2/N\) radiation is required. For example, a zone plate with a diameter of a few millimetres and <100-nm outer zone width would have over 10,000 zones, and therefore a frequently impractical 0.01% bandwidth.

We now consider refractive lenses. For a thin lens with a single curved surface of radius \(R\), the focal length is given by

\[ f_R = \frac{R}{n - 1} \]  

(3)

where \(n\) is the refractive index of the material. At wavelengths shorter than about 50 nm, the refractive index has the form

\[ n = 1 - \alpha \lambda^2 (f_1 + if_2) \]  

(4)

where \(\alpha = n_D r_e / 2 \pi\). In this expression, \(n_D\) is the number of atoms per volume, \(r_e = 2.8 \times 10^{-15}\) m is the classical radius of the electron, and \((f_1 + if_2)\) is the complex number of effective electrons per atom\(^\dagger\). Ignoring the absorptive part \(f_2\) of the refractive index, we see that the focal length of a refractive lens for EUV and X-ray radiation is given by

\[ f_R = \frac{R}{-\alpha \lambda^2 f_1} \]  

(5)

so that a concave lens produces positive focusing when \(f_1 > 0\), the opposite of the usual case for visible light.

A refractive lens is strongly chromatic, as its focal length scales as the inverse of \(\lambda^2\) and \(f_1(\lambda)\). Moreover, its focal length is too weak to be used as a single focusing optic because the quantity \(\alpha \lambda^2 f_1\) has the value of 10\(^{-3}\) to 10\(^{-6}\) for EUV light and X-rays, as anticipated by Einstein. It is only with ‘hard’ X-rays of energy greater than about 5 keV, where absorption is less problematic, that multiple weak refractive lenses can be stacked up into a compound refractive X-ray lens\(^\dagger\). The image resolution at present achieved is in the 300-nm range, being limited by absorption, imperfections in the fabrication of the refracting thickness profile, and alignment and depth of focus effects\(^\dagger\).

The achromatic Fresnel optic combines these two optics to cancel the chromatic aberration over a reasonable wavelength range (Fig. 1; other combinations of diffractive and refractive optics have been used to obtain different chromatic effects\(^\dagger\), and zone plate achromatic doublets have also been proposed\(^\ddagger\)). Let us consider the imaging properties of each lens as the wavelength is varied from a reference value \(\lambda\) as \(\lambda + \Delta \lambda\). The focal length of a Fresnel zone plate is then given by

\[ f_{Z'} = f_Z \frac{1}{1 + \frac{\Delta \lambda}{\lambda}} \]  

(6)

With the refractive lens, we must consider the variation both in \(\lambda^2 \rightarrow \lambda^2 + 2\Delta \lambda + (\Delta \lambda)^2\), and also in \(f_1\). It is well known that the real part of the refractive index \(f_1\) can have a strong dependence on wavelength near an absorption resonance owing to anomalous dispersion. This effect is also exploited in multiple-wavelength anomalous dispersion (MAD) methods in protein crystallography\(^\ddagger\). The simplest approximation that we can make to \(f_1\) is to incorporate a linear dispersive term and write it as:

\[ f_1 \rightarrow f_1 + \frac{\Delta f_1}{\lambda} \Delta \lambda \]  

(7)

Ignoring terms of order \((\Delta \lambda/\lambda)^2\), the focal length of a refractive lens becomes:

\[ f_{R'} \approx f_R \frac{1}{1 + \frac{2 \Delta \lambda}{\lambda} + \frac{\Delta f_1}{f_1}} \]  

(8)

If the two lenses are placed in close proximity to each other, their reciprocal focal lengths can be added:

\[ \frac{1}{f_C} = \frac{1}{f_{Z'}} + \frac{1}{f_{R'}} = \frac{1}{f_Z} + \frac{1}{f_R} + \frac{\Delta \lambda}{\lambda} \left(\frac{1}{f_Z} + \frac{1}{f_R}\right) (2 + D) \]  

(9)

where \(D = (\Delta f_1/f_1)/(\Delta \lambda/\lambda)\) characterizes the dispersion. If the term in the bracket becomes zero, the focal length becomes

\[ f_{C'} \approx f_C + \Delta f_1 \Delta \lambda \]  

Figure 1 The principle of an achromatic Fresnel lens, and an example of how it can be realized in a single optic. The chromatic aberrations of a zone plate produce a longer focal length for shorter wavelengths (\(\lambda\)) than for longer wavelengths (\(\lambda\)) (a). The chromatic aberrations of a refractive lens are opposite; (b) shows a convex refractive lens for wavelength regions where \(f_1\) is decreasing as the wavelength \(\lambda\) is decreased. One can thus combine the two optic types to cancel chromatic aberration over a certain wavelength range. The simplest such combination (b) involves fabrication of a zone plate and a plano-convex refractive lens on opposite sides of a single window; one can also replace the refractive lens with a refractive Fresnel lens to minimize absorption, and also use a staircase approximation to the curvature of the refractive Fresnel lens surface.
independent of ∆λ; that is, we have an achromat. Note that one can also seek large values of the bracketed term if it is desired to enhance the chromatic dispersion of a zone plate. The achromat condition can be written as:

$$\frac{f_R}{f_Z} = -(2 + D)$$  \hspace{1cm} (10)

The values of \(f_1\) and \(D\) can be calculated from absorption data by the Kramers–Kronig relations\(^{16,20}\), such as are shown in Fig. 2 for the Si and Cu L edges. Near the absorption edges, the magnitude of \(D\) can be significantly larger than \(2\), so that the focal length of the refractive lens is much larger than that of the zone plate (several metres versus several centimetres in our examples). As a result, the refractive lens by itself contributes only weakly to the net focusing action (it is only used as a dispersive corrector), so that the spatial resolution is determined almost solely by the Fresnel zone plate. This long refractive focal length goes along with a larger, easier-to-fabricate radius of curvature for the refractive lens component; this radius of curvature \(R_c\) can be written as:

$$R_c \approx 2(2\pi R^2)\lambda f_1 f_2$$  \hspace{1cm} (11)

Since \((\Delta f_1/\Delta\lambda)\) tends to be largest when it has a positive value near X-ray absorption edges (see Fig. 2), convex or plano-convex solutions for the refractive correction lens are preferred. In addition, the use of wavelengths longer than the absorption edge is preferred for EUV light and soft X-rays to reduce absorption. Finally, we note that the bandwidth gain depends on both the number of zones in the zone plate and on the dispersion properties of the refractive lens material. A schematic illustration of the effect is shown in Fig. 1.

The use of anomalous dispersion increases the radius of curvature and thus minimizes the total thickness of convex refractive lens components. However, at EUV wavelengths in particular the absorption from the thicker lens regions may be unacceptable. One solution is to replace the refractive lens with a refractive Fresnel lens so that the overall curvature can be maintained within a stepwise approximation. Ideally these thickness steps shift the phase of the transmitted light by an integer multiple of \(2\pi\). Other thickness steps can be chosen if the resulting phase error is compensated by adjustment of the zone positions of the Fresnel zone plate. It should be noted that an aberration-free Fresnel lens imposes a certain requirement for monochromaticity. As indicated by equation (4), the accumulated phase difference between a wave that propagates a distance \(t\) through free space and one that propagates the same distance through a material is \(k\delta\), so that a wavefront is displaced by a distance of \(\delta\). For illumination with a bandwidth of \(\Delta\lambda\), the coherence length is given by \(\lambda^2/(\Delta\lambda)\), so one must have \(\delta < \lambda^2/(\Delta\lambda)\) or \(t < (\lambda)/(\Delta\lambda)\lambda/\delta\). If we consider the example of Fig. 2 of \(\lambda = 13.5\) nm in Si where \(\delta = 9.5 \times 10^{-4}\) and

![Figure 2 X-ray optical constants and their consequences for EUV and soft X-ray achromatic Fresnel objectives.](image)

The absorption of the Fresnel zone plate (ZP) changes significantly over the wavelength range shown, especially when compared with the depth of field 2\(\lambda/(NA)^2\) of the optic, so that only very narrow bandwidth (BW) radiation can be used for imaging. However, when an achromatic Fresnel lens is produced by combining the zone plate with a refractive lens, the combined focal length (for several values of refractive lens radius of curvature \(R_Z\)) is constant to within a depth of field, DOF (as indicated by thickened lines for the combined focal length), over bandwidths approaching 1% for Si and 0.2% for Cu with these sets of parameters. In c, we indicate with a grey band the 13.4–13.5 nm wavelength band used in EUV lithography systems, while in d the grey band corresponds to the Cu L\(_\alpha\) fluorescence line. Note that improved measurements of absorption spectra and thus \(f_2\) values would lead to refined estimates of achromatic bandwidth. d, diameter of the zone plate.
the allowable achromatic bandwidth is 0.97% or \((\lambda\Delta\lambda) = 103\), we see that a thickness difference of up to 1.5 mm between the refractive lens and the refractive Fresnel lens profile still satisfies the coherence length requirement for the broadband used. It is this net thickness difference that is the important parameter; one could go up to this limit in \((\lambda\Delta\lambda) = 103\) steps of \(\pi\) phase change, or 34 steps of \(\pi\) phase change, to pick two examples. Finally, since the radius \(r\) of a plano-convex lens with a thickness \(t\) at its centre is given by \(r = \sqrt{2Rt - t^2}\), with \(R_C = 5.6\) mm and \(t\) = 1.5 mm one can have a lens radius up to 3.8 mm (or a numerical aperture of up to 0.75) and still remain within the coherence length requirement of a Fresnel lens with 0.93% bandwidth.

In practice, one can imagine lithographically fabricating an achromatic Fresnel optic (AFO) on a single thin membrane, with the Fresnel zone plate fabricated on one side, and a refractive Fresnel lens on the other side, as shown in Fig. 1 (possibly fabricated using multilevel\(^2\) or imprint\(^3\) methods). The achievable efficiencies of the zone plate and the Fresnel lens are about 30–50% and 30–80%, respectively, leading to a combined efficiency of 10–40% for the AFO which compares quite favourably with, for example, the \(\sim 5\%\) net throughput of a next-generation lithography system using six optics with 60% reflectivity each to gain the required resolution and field of view.

The size of the AFO and its imaging field are likely to be limited by primary aberrations. Seidel wavefront aberrations for imaging finite conjugates with zone plate optics have been calculated by Young\(^4\). At 1.34-nm wavelength (Cu L absorption edge) with a 4:1 demagnifying geometry (a standard set-up used in lithography cameras), aberration-free imaging fields of between 2 and 15 mm can be expected for outermost zone widths between 40 and 95 mm without aberration correction. When used with EUV radiation near 12.5 nm wavelength, the NAs are increased nearly tenfold and primary aberrations become more problematic unless the field of view is kept to a few tenths of 1 mm. Spherical aberration does not exist for Fresnel zone plates when the zone placement is computed for a specific imaging geometry. This property, along with the achromatic nature of the AFO, allows one to reduce the field curvature and astigmatism to an acceptable level by increasing the AFO diameter (therefore the focal length) while maintaining the same field of view. Coma can be reduced and eliminated in some cases by appropriate aperturing.

In general, the AFO design provides two important benefits: it makes a large bandwidth of electromagnetic radiation usable, and it allows large-diameter high-resolution optics to be produced without suffering from chromatic aberration. The increased bandwidth should greatly improve the throughput of applications using broadband X-ray sources, such as X-ray tubes and laser-produced plasmas. In addition, non-spectroscopic imaging applications such as tomography at synchrotron radiation sources could operate with reduced imaging time using multilayer monochromators rather than narrow-bandpass crystal monochromators. The large diameter gives large working distance and large imaging field, both valuable attributes in imaging applications. The present AFO design has the potential to make significant impact in X-ray microscopy and microanalysis, and next-generation lithography applications.